3.80 \(\int \frac{\text{sech}^4(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=52 \[ \frac{\tanh (c+d x)}{b d}-\frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{b^{3/2} d \sqrt{a+b}} \]

[Out]

-((a*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(b^(3/2)*Sqrt[a + b]*d)) + Tanh[c + d*x]/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0703809, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4146, 388, 208} \[ \frac{\tanh (c+d x)}{b d}-\frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{b^{3/2} d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2),x]

[Out]

-((a*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(b^(3/2)*Sqrt[a + b]*d)) + Tanh[c + d*x]/(b*d)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{sech}^4(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1-x^2}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\tanh (c+d x)}{b d}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{b d}\\ &=-\frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{b^{3/2} \sqrt{a+b} d}+\frac{\tanh (c+d x)}{b d}\\ \end{align*}

Mathematica [B]  time = 0.679913, size = 182, normalized size = 3.5 \[ \frac{\text{sech}^2(c+d x) (a \cosh (2 (c+d x))+a+2 b) \left (\sqrt{a+b} \text{sech}(c) \sinh (d x) \sqrt{b (\cosh (c)-\sinh (c))^4} \text{sech}(c+d x)+a (\sinh (2 c)-\cosh (2 c)) \tanh ^{-1}\left (\frac{(\cosh (2 c)-\sinh (2 c)) \text{sech}(d x) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt{a+b} \sqrt{b (\cosh (c)-\sinh (c))^4}}\right )\right )}{2 b d \sqrt{a+b} \sqrt{b (\cosh (c)-\sinh (c))^4} \left (a+b \text{sech}^2(c+d x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2),x]

[Out]

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^2*(a*ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*Sinh
[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(-Cosh[2*c] + Sinh[2*c]) + Sqrt[a +
 b]*Sech[c]*Sech[c + d*x]*Sqrt[b*(Cosh[c] - Sinh[c])^4]*Sinh[d*x]))/(2*b*Sqrt[a + b]*d*(a + b*Sech[c + d*x]^2)
*Sqrt[b*(Cosh[c] - Sinh[c])^4])

________________________________________________________________________________________

Maple [B]  time = 0.045, size = 141, normalized size = 2.7 \begin{align*} -{\frac{a}{2\,d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+b}}}}+{\frac{a}{2\,d}\ln \left ( -\sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}-\sqrt{a+b} \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+b}}}}+2\,{\frac{\tanh \left ( 1/2\,dx+c/2 \right ) }{bd \left ( \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^4/(a+b*sech(d*x+c)^2),x)

[Out]

-1/2/d*a/b^(3/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))+1
/2/d*a/b^(3/2)/(a+b)^(1/2)*ln(-(a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)-(a+b)^(1/2))+2/
d/b*tanh(1/2*d*x+1/2*c)/(tanh(1/2*d*x+1/2*c)^2+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.27102, size = 1661, normalized size = 31.94 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*((a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a)*sqrt(a*b + b^2)*log((a^2*c
osh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 +
 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2
 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) + 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x +
 c)^2 + a + 2*b)*sqrt(a*b + b^2))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 +
 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a +
 2*b)*cosh(d*x + c))*sinh(d*x + c) + a)) - 4*a*b - 4*b^2)/((a*b^2 + b^3)*d*cosh(d*x + c)^2 + 2*(a*b^2 + b^3)*d
*cosh(d*x + c)*sinh(d*x + c) + (a*b^2 + b^3)*d*sinh(d*x + c)^2 + (a*b^2 + b^3)*d), -((a*cosh(d*x + c)^2 + 2*a*
cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a)*sqrt(-a*b - b^2)*arctan(1/2*(a*cosh(d*x + c)^2 + 2*a*cosh
(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(-a*b - b^2)/(a*b + b^2)) + 2*a*b + 2*b^2)/((a*b^2
+ b^3)*d*cosh(d*x + c)^2 + 2*(a*b^2 + b^3)*d*cosh(d*x + c)*sinh(d*x + c) + (a*b^2 + b^3)*d*sinh(d*x + c)^2 + (
a*b^2 + b^3)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}^{4}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**4/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(sech(c + d*x)**4/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.16742, size = 100, normalized size = 1.92 \begin{align*} -\frac{a \arctan \left (\frac{a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt{-a b - b^{2}}}\right )}{\sqrt{-a b - b^{2}} b d} - \frac{2}{b d{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

-a*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/(sqrt(-a*b - b^2)*b*d) - 2/(b*d*(e^(2*d*x + 2*c)
 + 1))